在日前举行的2021人工智能计算大会上,国际数据公司IDC和浪潮信息联合发布的《2021—2022中国人工智能计算力发展评估报告》显示,相比2020年,人工智能在金融、制造、能源、公共事业和交通等行业体现的推动作用尤为显著。同时,以智能计算中心为代表的算力基础设施,通过提供公共的算力、数据及算法服务,让算力服务易用,解决算力服务的供给问题。
 
“4年来,我们发现人工智能算力越来越受到重视,这方面的应用越来越成熟,无论是芯片的多元化还是人工智能服务器的计算能力、计算容量等都比4年前有了很大的提高。”IDC企业研究助理副总裁周震刚接受经济日报记者采访时说。
 
周震刚表示,相比去年,人工智能在各个行业的渗透度都在提升,尤其是在互联网行业和金融行业。此外,制造、交通和能源行业在人工智能的应用也更加深入。
 
据了解,全球已有60多个国家和地区出台人工智能政策,发布国家级人工智能战略。IDC预测,2021年全球企业在人工智能软件、硬件和服务的总投资将超850亿美元,预计在2025年将增至2045亿美元,5年复合增长率达24.5%。
 
不过,中国工程院院士、浪潮首席科学家王恩东认为,人工智能也带来了指数级增长的算力需求,计算产业正面临着多元化、巨量化、生态离散化交织的趋势与挑战。一方面,多样化的智能场景需要多元化的算力,算力已经成为人工智能继续发展的重中之重;另一方面,从芯片到算力的转化依然存在巨大鸿沟,多元算力价值并未得到充分释放。如何快速完成多元芯片到计算系统的创新,已经成为推动人工智能产业发展的关键环节。
 
人工智能产业化对算力的需求正在激增,浪潮信息副总裁刘军表示,算法模型发展也将更加复杂,巨量模型将是规模化创新的基础,“源1.0”等巨量模型的出现,让构建大模型、提升人工智能处理性能成为发展趋势。
 
目前,全球知名的人工智能公司在巨量模型上都投入巨大,谷歌、微软、英伟达、浪潮、智源人工智能研究院、百度、阿里等公司相继推出了各自的巨量模型。“巨量化的一个核心特征就是模型参数多、训练数据量大。”刘军以浪潮人工智能研究院开发的中文人工智能巨量模型“源1.0”为例介绍说,其数量高达2457亿,训练数据集规模达到5000GB。“我们对算力的追求没有极限。”刘军说。

dawei